Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orphanet J Rare Dis ; 13(1): 212, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30477550

RESUMO

BACKGROUND: Classic galactosemia is a rare genetic metabolic disease with an unmet treatment need. Current standard of care fails to prevent chronically-debilitating brain and gonadal complications. Many mutations in the GALT gene responsible for classic galactosemia have been described to give rise to variants with conformational abnormalities. This pathogenic mechanism is highly amenable to a therapeutic strategy based on chemical/pharmacological chaperones. Arginine, a chemical chaperone, has shown beneficial effect in other inherited metabolic disorders, as well as in a prokaryotic model of classic galactosemia. The p.Q188R mutation presents a high prevalence in the Caucasian population, making it a very clinically relevant mutation. This mutation gives rise to a protein with lower conformational stability and lower catalytic activity. The aim of this study is to assess the potential therapeutic role of arginine for this mutation. METHODS: Arginine aspartate administration to four patients with the p.Q188R/p.Q188R mutation, in vitro studies with three fibroblast cell lines derived from classic galactosemia patients as well as recombinant protein experiments were used to evaluate the effect of arginine in galactose metabolism. This study has been registered at https://clinicaltrials.gov (NCT03580122) on 09 July 2018. Retrospectively registered. RESULTS: Following a month of arginine administration, patients did not show a significant improvement of whole-body galactose oxidative capacity (p = 0.22), erythrocyte GALT activity (p = 0.87), urinary galactose (p = 0.52) and urinary galactitol levels (p = 0.41). Patients' fibroblasts exposed to arginine did not show changes in GALT activity. Thermal shift analysis of recombinant p.Q188R GALT protein in the presence of arginine did not exhibit a positive effect. CONCLUSIONS: This short pilot study in four patients homozygous for the p.Q188R/p.Q188R mutation reveals that arginine has no potential therapeutic role for galactosemia patients homozygous for the p.Q188R mutation.


Assuntos
Arginina/uso terapêutico , Galactosemias/tratamento farmacológico , Galactosemias/genética , Mutação/genética , Ácido Aspártico/uso terapêutico , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Galactose/metabolismo , Humanos , Erros Inatos do Metabolismo/tratamento farmacológico , Erros Inatos do Metabolismo/genética , Estudos Retrospectivos
2.
Anat Rec (Hoboken) ; 300(9): 1570-1575, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28545161

RESUMO

Classic galactosemia results from deficient activity of galactose-1-phosphate uridylyltransferase (GALT), a key enzyme of galactose metabolism. Despite early diagnosis and early postnatal therapeutic intervention, patients still develop neurologic and fertility impairments. Prenatal developmental toxicity has been hypothesized as a determinant factor of disease. In order to shed light on the importance of prenatal GALT activity, several studies have examined GALT activity throughout development. GALT was shown to increase with gestational age in 7-28 weeks human fetuses; later stages were not investigated. Prenatal studies in animals focused exclusively on brain and hepatic GALT activity. In this study, we aim to examine GALT specific activity in late prenatal and adult stages, using a sheep model. Galactosemia acute target-organs-liver, small intestine and kidney-had the highest late prenatal activity, whereas the chronic target-organs-brain and ovary-did not exhibit a noticeable pre- or postnatal different activity compared with nontarget organs. This is the first study on GALT specific activity in the late prenatal stage for a wide variety of organs. Our findings suggest that GALT activity cannot be the sole pathogenic factor accounting for galactosemia long-term complications, and that some organs/cells might have a greater susceptibility to galactose toxicity. Anat Rec, 300:1570-1575, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Galactosemias/embriologia , Ovinos/embriologia , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo , Animais , Feminino , Galactosemias/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...